Lemma 97. Let V be a countable dimensional vector space over \mathbb{C} . If $T \in \text{End}(V)$, then there exists a scalar $c \in \mathbb{C}$ such that $T - c \cdot Id_V$ is not invertible on V.

Proof. Suppose $T-c\cdot Id_V$ is invertible for all $c\in\mathbb{C}$. Then P(T) is invertible for all polynomials $P\in\mathbb{C}[x],\,P\neq0$. Thus, if R=P/Q is a rational function with $P,Q\in\mathbb{C}[x]$, we can define R(T) by $P(T)\cdot(Q(T))^{-1}$. This rule defines a map $\mathbb{C}(x)\to\mathrm{End}(V)$. If $v\in V,\,v\neq0$, and $R\in\mathbb{C}(x),\,R\neq0$, then $R(T)v\neq0$. Hence the map

$$\mathbb{C}(x) \to V, \quad R \mapsto R(T)v,$$

is injective. Since $\mathbb{C}(x)$ has uncountable dimension over \mathbb{C} (for example, the rational functions $(x-a)^{-1}$, $a \in \mathbb{C}$, are linearly independent), we get a contradiction.

101

ducibly. If $T \in \text{End}(V)$ commutes with every element of S, then T is a scalar multiple of the identity operator.

Proof. By Lemma 97, there exists a $c \in \mathbb{C}$ such that $T - c \cdot Id_V$ is not invertible on V. Then $\ker(T - c \cdot Id_V)$ and $\operatorname{Im}(T - c \cdot Id_V)$ are preserved by S, hence these spaces are either $\{0\}$ or V. If $\ker(T - c \cdot Id_V) = \{0\}$ and $\operatorname{Im}(T - c \cdot Id_V) = V$, then T is invertible (there is no topology or continuity involved here). Hence $\ker(T - c \cdot Id_V) = V$ or $\operatorname{Im}(T - c \cdot Id_V) = \{0\}$ and in both cases $T = c \cdot Id_V$.